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Passive remote monitoring applications of underwater signal processing in a shallow water
environment are an impactful area of research for environmental and marine-life monitoring.
The majority of the sound source localization techniques require carefully placed synchronized
hydrophone arrays, which can be complicated and hard to maintain. In this paper, we utilized
the modal dispersions of a signal to derive a localization method for a noisy, shallow water
environment. Our proposed algorithm employs modal selection to process the most noise-
resistive dispersion curves, improving the accuracy and noise-resistivity of the existing methods.
Moreover, we proposed a 2D localization method with multiple unsynchronized hydrophones
and minimal hardware requirements and limitations. Furthermore, we analyzed the effects of
underwater ambient noise on the accuracy of the proposed method, using simulated and real
recorded explosion and whale sounds, and compared our algorithm’s localization performance
with others. Simulation results show increased localization accuracy of 30m for the recorded
explosion sound and 360m for the Whale sound.

1 Introduction

This paper extends our previous work presented in CCECE 2022 [1]
by introducing a selective-modal algorithm architecture for localiz-
ing impulsive sound sources in shallow waters. Our proposed algo-
rithm improves performance in lower signal-to-noise ratio (SNR)
scenarios by selecting the best modal pairs. In this paper, we provide
a more detailed explanation of the localization formulas, propose a
2D unsynchronized localization scheme, analyze the performance of
our algorithms using real recorded signals, and compare them with
existing works. This paper extends our previous work presented
in CCECE 2022 [1] by introducing a selective-modal algorithm ar-
chitecture for localizing impulsive sound sources in shallow waters.
Our proposed algorithm improves performance in lower signal-to-
noise ratio (SNR) scenarios by selecting the best modal pairs. In this
paper, we provide a more detailed explanation of the localization
formulas, propose a 2D unsynchronized localization scheme, ana-
lyze the performance of our algorithms using real recorded signals,
and compare them with existing works.

The field of underwater acoustics encompasses the primary
modality of underwater sensing and communication, which is sound.
Early research in underwater signal processing focused on mathe-

matical models and the behavior of acoustic sounds in the under-
water environment [2]. Over time, advancements in adaptive signal
processing and sensor technology led to practical applications in
underwater signal processing. Sonar systems, particularly under-
water sonars, have undergone rapid developments in the past two
decades, driven by increased processing capability and the imple-
mentation of more computationally intensive techniques. The under-
water environment presents unique challenges, including increased
human-made noise due to the growing number of vessels in the
ocean. Marine mammals heavily rely on vocalization for communi-
cation and locating other mammals, making them sensitive to sounds
generated by human activities such as geophysical explorations, off-
shore extraction, shipping, and active sonar applications[3]. As a
result, researchers have been motivated to develop remote moni-
toring techniques to study marine mammal behavior and monitor
environmental changes. Underwater localization techniques can
be broadly classified into passive and active categories. Passive
sonar processes received signals without signal transmission, while
active sonar involves both signal transmission and reception [4]–[5].
Researchers have proposed various passive underwater localization
methods, including time-frequency difference of arrival (TDOA), re-
ceived signal strength (RSS), and modal-based analysis [6]–[7]. The

*Corresponding Author: Shahpour Alirezaee, CEI, University of Windsor, Windsor,ON, CA, 519-253-3000 ext. 7472 & alirezae@uwindsor.ca

www.astesj.com
https://dx.doi.org/10.25046/aj080403

18

http://www.astesj.com
https://www.astesj.com
https://dx.doi.org/10.25046/aj080403


F. Talebpour et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 4, 18-27 (2023)

underwater medium is a dynamic multi-path channel where sound-
waves travel through multiple paths with different speeds [8, 9].
TDOA algorithms utilize time differences between received signals,
while RSS algorithms focus on received signal power. However,
implementing TDOA-based techniques often requires synchronized
hydrophone arrays and prior information, resulting in increased
costs, complexity, and high error levels in low SNR environments.
In [10], the authors conducted experiments under real test condi-
tions with sensor nodes and observed that the sensors constantly
move due to varying water surface conditions, resulting in unsyn-
chronized sensor nodes. To address this issue, the authors in [11]
proposed a self-calibration technique utilizing a shift-keying pulse
and composite transducers. Similarly, in [12], it was demonstrated
that the use of maximum likelihood estimators (MLE) in TDOA
methods led to non-linearity problems. In response, the authors in
[13] formulated TDOA target motion analysis as a least-square opti-
mization problem, solving it in polynomial time. Furthermore, [14]
investigated the performance of TDOA techniques under different
noise levels and highlighted the significant impact of white noise on
the accuracy of TDOA algorithms.

To improve the accuracy and noise resistivity, [7] introduced
a hybrid localization technique based on the direction of arrival
(DOA) and received signal strength (RSS) using a vector and an
isotropic acoustic hydrophone. Phased array-based localization was
proposed in [15] to enhance noise resistivity. However, TDOA-
based methods, while accurate, often require arrays of synchronized
hydrophones and prior information, resulting in higher implementa-
tion costs, increased complexity, and reduced accuracy in low SNR
environments. In [16], the authors suggested the utilization of the
Kronecker product operation to extract the two-dimensional power
distribution matrix from the beam power function, reducing the
number of required hydrophones and improving noise resistivity.

Despite extensive efforts in the field, achieving sensor node syn-
chronization and fulfilling the multi-hydrophone requirements of
TDOA-based techniques can still pose significant challenges and in-
cur high costs. To overcome these limitations, modal analysis-based
localization was introduced as a solution, eliminating the need for
source prior information, multiple hydrophones, and hydrophone
synchronization [16, 17]. In the underwater environment, acoustic
waves consist of multiple modes that travel through water with vary-
ing velocities. As a result of these differing velocities, the modes
disperse during propagation through the water channel [6, 18]. In
[19] , the authors proposed a modal analysis-based approach specifi-
cally designed for localizing mammal sounds. Furthermore, in [11],
accuracy was enhanced by expanding the localization frequency
range and considering additional modes during the localization
process. Additionally, [20] proposed a nonlinear-based warping
technique for modal filtering.

In this paper, we build upon our previous work published in
[1] and introduce novel advancements to the field of underwater
localization. Specifically, we extend our research by incorporating
the utilization of multiple hydrophones for two-dimensional local-
ization. Unlike previous approaches, our proposed techniques are
independent and standalone, enabling each hydrophone to perform
separate target localization in an unsynchronized manner.

To lay the groundwork for our methodology, we begin by intro-
ducing a shallow underwater channel model based on the theory of

normal modes in Section 2. Additionally, we present a comprehen-
sive model for the channel’s ambient noise and derive the modal
functions necessary for modal analysis.

In Section 3, we take a significant step forward by deriving a
selective noise-resistive modal-based localization method that ex-
hibits improved resistance to noise. This novel approach addresses
a crucial challenge in underwater localization and enhances the
accuracy of our algorithm.

To evaluate the performance of our proposed method, we present
the obtained results in Section 4 and highlight the significance of
modal selection for achieving superior performance. Furthermore,
we thoroughly investigate the impact of noise on the accuracy of
our algorithm within the 30dB < SNR < 45dB range, providing
insightful comparisons with existing approaches.

In addition, we conduct an in-depth analysis and comparison of
the accuracy and noise resistivity of our proposed method with other
techniques using real recorded explosions and north Atlantic sounds.
By doing so, we establish a comprehensive understanding of the
strengths and limitations of our approach in realistic scenarios.

Finally, we evaluate the performance of our proposed 2D Local-
ization and tracking method by comparing it with state-of-the-art
techniques, demonstrating the advancements we have made in the
field of underwater localization.

2 Normal Mode Propagation

Normal mode theory is suitable for modeling shallow underwater
environments with respect to normal-Modes propagation. While
modal-based channel models are not the most accurate model cur-
rently available, they can accurately model shallow underwater
environments for passive sound source localization and monitoring
applications.

2.1 Underwater Acoustic Propagation

Let us consider the model description presented in Figure 1 where
an acoustic sound source is located at (xs, ys, zs) that produces a
continuous-time signal. After propagation, the signal is picked up
by a hydrophone placed on a buoy at (xh, yh, zh). For ease of use,
we have considered the hydrophone on the right end of Figure 1 as
the point of origin in the Cartesian and cylindrical coordinates. The
displacement caused by the propagating source is time-harmonic,
governed by Helmholtz law, and is given as [6, 21, 17, 22, 23, 24]

Figure 1: Model description
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K (⃗r) is the medium wave number at radial frequency ω,∇ gradi-
ent operator, and p(⃗r) is the pressure. We can further simplify this
equation to form the Helmholtz equation in two dimensions, as the
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where r is the distance to the source, ρ is the medium density, c is
the propagation speed, δ is the Dirac delta, and ω is angular velocity
[6]. Using the separation of variables, we look for a depth-related
pressure solution in the form of p(r, z) = ϕ(r)ψ(z), which will result
in
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where ϕ is the volume displacement, and Ψ is the general modal
depth function. Terms in square brackets of the equation (3) are
functions of rand zrespectively. To satisfy the equation (3), each
term should be equal to a constant [24]. Considering the Pekeris
waveguide -where water is considered equal columns with vary-
ing speeds of propagation- We can drive the modal equation by
considering the K2

rm as a separation constant [25].
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where ψm(z) is the particular modal function ψ(z) obtained with
horizontal wave-number Krm as separation constant. The boundary
condition of the equation (4) considers each water column a pres-
sure release surface (z = 0) and a perfectly rigid seabed at z = D
(D < 100) which translates to no changes in the volume at surface
and seabed resulting in dψ/dz = 0 [25].
Equation (4) is a classical Sturm-Liouville eigenvalue problem [24].
Applying the orthogonality of the modal Sturm-Liouville problem,
we can write ∫ D

0

ψm (z)ψn (z)
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dz = 0 m , n (5)

Equation (3), the solutions of modal equations are arbitrary to mul-
ticaptive constants; therefore, we can further simplify the results
using equation (5) as ∫ D

0

ψ2
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Moreover, modes transmit as a complete set, resulting in an arbitrary
function as a sum of all normal modes, which will yield the pressure
function as:
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After applying the operator equation (9)∫ D
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(·)
ψn (z)
ρ (z)

dz (9)

Furthermore, considering the orthogonality property stated in
the equation (5), only n terms of the sum remain.
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the solution to the equation (10) is provided in terms of the Hankel
function as:
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1
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The signal’s energy radiates outwards, and therefore the solution
will be H(1)

0 . Considering the radiation conditions, after substituting
(11) in (7), we can derive the pressure equation based on the modal
function as
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we can further simply equation (12) by using the asymptotic approx-
imation to the Henkal’s function, yielding:
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provides us with the pressure function, based solely on modal func-
tions and depth.

2.2 Solution to Wave Equation

We must simplify the displacement equations further to perform
channel modeling in simulation software. The non-homogeneous
differential equation (1) can be solved using the Green’s function
method and expanded as the displacement equation as [6, 23]
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substituting g (z) =
∑

m amψm (z) In equation (14) provides the depth
related modal function as:
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where Krm,Kz,Kr are the angular, vertical and horizontal wavenum-
bers [26, 6]. applying Green’s solution to equation (15) would
provide the general modal function:

g (z) = −
1

2πρ (zs)

∑
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ψm (zs)ψm (z)
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(16)

with general solutions and eigenfunctions as follows
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where vm(ω) is the velocity of mode m at angular frequency ω.

2.3 Underwater Ambient Noise

Noise in a shallow underwater environment can be categorized into
two main types, ambient noise caused by the channel characteristics
and artificial noises created by external sources such as ships and
marine life. Many studies consider the noise a simple added white
noise; however, underwater ambient noise can be more accurately
modeled as colored noise. The underwater channel’s behavior is
best described as a low-pass filter. It can be modeled as a white noise
sequence filtered using a Butterworth IIR low-pass filter with 30dB
attenuation in stopband and normalized stopband frequency of 0.05
hal f cyle/sample per sample ad 0.9 hal f cyle/sample Respectively
[27]. Figure 2 presents the signal and noise in the time domain with
SNR=45dB.

Figure 2: Signal (blue), Noise (red)

3 Modal Analysis based localization
In the previous section, we introduced the channel model and modal
functions. In this section, we will derive the necessary equations for
the localization of impulsive sound sources using modal functions.

The modal-based localization methods are based on the dispersion
of the natural frequencies as they propagate underwater.

3.1 Modal Dispersion

As stated earlier, modes travel at different speeds ( equation (17)),
resulting in dispersion at the receiver. Let us consider the simu-
lation scenario of Figure.1, where the Normal mode theory with
ambient noise is used to model the channel. Considering an impul-
sive sound source at a depth of Ds=20m, 4000 meters away from
the hydrophone, (ρ(S eabed)=1000(Kg/m3), ρ(Water)=1000(Kg/m3),
c(S eabed)=1500(m/s), c(Water)=1600(m/s)), the propagated signal
will have the time-frequency (TF) representation provided in Fig-
ure.3, which illustrates the dispersion caused by the difference in
propagation speeds. One can employ the dispersion of modes to
localize the sound source through modal analysis after filtering
them.

Figure 3: TF analysis, Modal dispersion , f(Max)=600Hz

As the TF analysis graph illustrates, the dispersion curve’s frequen-
cies overlap between the modes and render conventional filtering
techniques inert. The overlapped frequencies are the product of the
nonlinear phase characteristics in the equation (16).To address this
issue, considering the pressure signal in the time domain as

P (t) =
∑

m

ψm (t) e2 jπνc(m)ζ(t) (18)

Where ζ (t)is the dispersity function ζ (t) in the time domain is given
as

ζ(t) =
√

t2 − t2
r =

√
t2 − (r/vg)2 (19)

Using ζ (t), we can warp the signal by linearizing the phase using a
warping function [17]:

 ζ =
√

t2 − (r/vg)2

ζζ−1 = 1
→ ζ−1 (t) =

√
t2 +

(
r/vg

)2
(20)

Applying the warping function ζ−1 linearizes the phase. The TF
graph of the linearized signal is presented in Figure 4.
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Figure 4: TF graph of warped signal

3.2 Localization Algorithm

Since the modal dispersion is directly related to the speed of propa-
gation and distance, we can develop localization algorithms based
on the TDOA concept. After filtering each of the dispersion curves;
in an accurate channel model, the following expression will be true

τn
Estimated

(r, c) − τn
Measured

≈ 0 ∀n (21)

Where τn is the dispersion curve. Measured τn can be obtained by
warping and filtering each of the modals and by substituting the
relationship between velocity and distance in the equation (17), the
estimated τn can be obtained as:

τn
Estimated

(r, c) =
r

vg ( f , n)
(22)

Where τn is the estimated dispersion curve for mode n transmitted
over the range R with seabed sound speed c and group velocity
υg ( f , n). To localize the signal, we are looking for a range r that
minimizes the statement (21). In other words

[r̂] = arg min
[r̂]

(( τm
Estimated

(r, cseabed) − τn
Estimated

(r, cseabed)) − . . .

( τm
Measured

− τn
Measured

))

(23)
Where m and n can be any of the modes, summing over all frequency
bins will yield

∑
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∑
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∑
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[(
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)
−

(
∆τn,m
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)]
≈ 0 ∀n,m (24)

Equation (24) results in a m × n matrix of dispersion curve differ-
ences and are used to derive the following cost function

η (r, c, n, f ) =
∑

r

∑
n

∑
m

∑
f

[((
∆τn,m (r)
Estimated

)
−

(
∆τn,m
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))]2

(25)

We employed a grid search algorithm to minimize the cost function
η for values of r.

Algorithm 1 presents our proposed method where µr defines the
localization step size in the search boundary [rmin, rmax] and ε is the

accuracy of the estimated range. The Localization is performed in
two steps; first, seabed and water parameters are defined based on
the environment, and search boundaries for range and propagation
speeds in seabed and sea are set. Next, the tensor of order 3, as
shown in Figure 5, is formed to find the pairs of dispersion curves
with the best performance (lowest value). Then, the cost function
is formed only for the selected pairs of modes. Using a grid search
algorithm, the location of the source can be estimated.

Figure 5: Cost function [ ]r×m×n

Figure 6: Model Description, multi hydrophone (H1,H2,H3)
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Algorithm 1: Proposed localization Algorithm
Result: r
Initialization r̂ = (rmin : rmin + µr : rmax), ρwater, ρseabed;
Warp Input signal;
Extract τn using TF ;
while (rmin < r̂ < rmax) do

Form MPC;
Select best modal pair;
Minimize cost function;
if ∆r,≤ ε then

return:[r̂];
else

Change µr;
end

end

3.3 2D Localization

While most modal-based localization methods proposed by litera-
ture perform ranging, we propose a method for unsynchronized 2D
localization with minimal hardware requirements. In the case of 2D-
localization requirements, buoys (each with a single hydrophone)
can transmit the received signals to a base station on shore or a ves-
sel to be analyzed in a central processor. Although utilizing multiple
hydrophones would require sensor synchronization in other meth-
ods, the proposed modal-based localization analyzes modes picked
up by each hydrophone separately. Moreover, given the high-range
localization capabilities, buoys can be placed far apart, reducing
implementation costs. Figure 6 illustrates the model description
for 2D localization, where lines Line1 and Line2 are assumed at
coordinates [(xH2 − xH1)/2], [(xH2 − xH3)/2]. Given the distances of
each buoy, each hydrophone’s average power of received modes is
different. Hydrophones with the highest levels of received signal
power are closest to the target. In the model description presented in
Figure.6 ; P(BH3) < P(BH2) < P(BH1) places the estimated latitude
of the source Line1H1H2 > xs. Based on the estimated location
of the source and three calculated ranges from each buoy, we can
perform 2D triangulation and track an object without needing a
synchronized sensor array.

4 Results and Discussions
This section includes numerical experiments to illustrate the pro-
posed localization method and discusses the effects of ambient noise
on the accuracy of the proposed algorithm. Modal analysis is suit-
able for processing underwater signals in long distances (r > 1000m)
based on only one hydrophone without synchronization.

4.1 Simulated Sound

We consider an impulsive sound source is placed at Cartesian co-
ordinates ( 4000,45,0) with a maximum frequency of 500 Hz. An

Omni-directional hydrophone is located at (0,15,0). We assume
the speed of propagation in the seabed cb = 1600m/s, speed of
propagation in water cw=1500m/s, density in water ρw=1000kg/m3,
and density in the seabed ρb=1500kg/m3. The performance is eval-
uated based on the cost function’s mean square error (MSE) and the
estimated range’s Root Mean Square Error (RMSE). Moreover, the
result of this study is compared with those of [17], which has used
the same approach in localization.

Figure 7 (a),(b), and (c) illustrates the RMSE of the cost function
for SNR=45dB,35dB, and 30dB values for each modal pair. As
we can see, considering the low-pass filter nature of the ambient
noise, the noise than others would more influence pairs of first and
last modes. This is mainly due to both filter boundaries’ relatively
low stop-band attenuation. This effect can compromise localization
accuracy in low SNR environments. To address this issue, we pro-
posed employing the cost-function MSE matrix of Figure 7, using
the equation (25) to identify the best and most noise-resistant pairs
of modes (lowest values), resulting in the lowest MSE. After iden-
tifying the best modal pairs (2 pairs in this study), we can find the
estimated location of the acoustic sound source through the equation
(23).

Figures 7 (a), (b), and (c) depict the Root Mean Square Error
(RMSE) of the cost function for SNR values of 45dB, 35dB, and
30dB, respectively, for each pair of modes. It can be observed that,
due to the low-pass filter characteristics of ambient noise, certain
modal pairs are more influenced by noise compared to others. This
effect is particularly prominent in the first and last mode pairs, pri-
marily because of the relatively low stop-band attenuation at the
boundaries of the filter. In low SNR environments, this influence
can significantly compromise localization accuracy. Furthermore,
Figure 7 demonstrates that the choice of modal pairs significantly
impacts the error levels, as different pairs yield varying levels of
error. The study presented in [17] solely employs modal pairs with
sequential wavenumbers numbers, disregarding the performance of
different pairs. To address this issue, we propose utilizing the MSE
matrix of Figure 33 as the cost function, employing equation (25) to
identify the most noise-resistant and optimal pairs of modes (with
the lowest values). This selection process leads to lower MSE and
enables us to determine the estimated location of the acoustic sound
source using equation (23).
Figure 8a showcases the Root Mean Square Error (RMSE) of our
proposed cost function for range estimation at different SNR lev-
els, and it compares these results with the localization outcomes
presented in [17]. Figures 8a and 8b clearly demonstrate that our
proposed method exhibits superior performance in both low and
high SNR environments. This improvement can be attributed to the
fact that the localization method employed in [17] does not incor-
porate mode pair evaluation or selection. Instead, they utilize pairs
of modes with consecutive mode numbers in their localization algo-
rithm. However, as indicated in Figure 7, sequential mode numbers
do not necessarily yield better localization results. By performing
mode evaluation and selection, as shown in Figures 8a and 8b, the
localization algorithm becomes more resilient to high levels of noise
and achieves greater accuracy.
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(a) (b) (c)

Figure 7: Cost function MSE for (a)SNR:45dB, (b)35dB, (c)30dB

(a) (b)

Figure 8: Time Frequency Representation (TFR) of (a) Cost Function RMSE (b) Log(RMSE) of estimated range for: 28dB < S NR < 45dB

4.2 Recorded North Atlantic Whale and Explosion
Sound Localization

In this section, we conduct a comprehensive evaluation of our pro-
posed selective weighted algorithm using two distinct sound sources:
the sound of a North Atlantic Right Whale and an explosion sound.
Figure 9 depicts the time series and time-frequency (TF) analysis of
these signals transmitted over different distances: 4.5 Km (z=20m)
for the explosion sound and 8.7 Km (z=66m) for the whale sound.
The TF analysis reveals that the noisy signal representing the explo-
sion has a maximum frequency of 450 Hz, while the whale sound
exhibits a lower maximum frequency of approximately 350 Hz.
Furthermore, it is evident that certain modes are more susceptible
to interference, highlighting the significance of modal selection and
weighting functions in our approach.

We proceeded to localize the two signals and compared our

results with our previous work and other existing methods. Table 1
presents the localization outcomes, demonstrating notable improve-
ments compared to other proposed methods. Our Selective-modal
based localization (SMP) approach achieved an error rate of 2.6%
for both the recorded explosion sound and whale sound, while the
Sequential Pair-Mode Analysis (SM) method yielded error rates
of 3.11% and 6.2% for the respective signals. The superior perfor-
mance of our proposed SMP method can be attributed to employing
a larger number of dispersion curves (as opposed to only six se-
quential dispersion curves in SM) and performing initial modal
selection.

Despite these improvements, it is important to note, as indicated
in the TF analysis of Figure 9 and discussed in Section 3, that noise
and channel effects vary across different modes. Consequently, each
mode exhibits different weights and importance in the localization
process, a consideration that is addressed in our approach.
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(a) (b)

Figure 9: TF analysis: (a) North Atlantic Whale (b) Underwater Explosion

Table 1: Localization of Recorded North Atlantic whale (r=8700m) and explosion sound(r=4500)

Signal Source Method Number of Modes Used Range (m) Error (%) References

Explosion Sound Sequential Pair-Mode Analysis (SM) 6 4351 3.11 [17]

Selective modal-Pair Analysis 9 4383 2.6 Proposed

North Atlantic Whale

Sequential Pair-Mode Analysis 4 9240 6.2 [17]

Mode analysis 2 9225 6.03 [28]

Downhill simplex algorithm 2 8884 2.11 [29]

TOA 2 8950 2.87 [30]

Selective modal-Pair Analysis 4 8881 2.06 Proposed

4.3 2D Localization

In this section, we conduct a comparative analysis of the 2D track-
ing performance of our localization algorithm in relation to other
methods. Using the model description outlined in Figure 6, we
employed a simulated non-stationary impulsive sound source that
closely resembles the characteristics of a traveling whale following
a sinusoidal path along the (x, y) axis.

Our 2D localization approach involves estimating the range of
the sound source to each buoy, followed by triangulation based on
the approximate direction of arrival and the intersection point of
circles with a radius of rh. The localization results for both the
Sequential modes (SM) and our proposed Selective-modal based
localization (SMP) are depicted in Figure 9, along with the true
location of the sound source. It is evident from the results that SMP

exhibits a closer adherence to the true range line compared to SM.
This improved performance can be attributed to the modal selection
function we introduced in this paper, which enables more accurate
localization of the sound source.

5 Conclusion

In this study, we presented a passive impulsive sound source lo-
calization approach specifically designed for shallow underwater
environments. Our method utilized the normal mode channel model
and ambient noise to achieve accurate localization. A key contri-
bution of this paper is the introduction of a localization scheme
that incorporates modal pair selection, enabling enhanced noise
resistance and improved accuracy.
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Additionally, we proposed a 2D localization technique suitable
for unsynchronized hydrophones, which aligns with the require-
ments of existing remote monitoring systems. To evaluate the per-
formance of our algorithm, we conducted extensive analyses under
various signal-to-noise ratio (SNR) conditions, comparing its noise
resistance capabilities with other methods.

Furthermore, we validated our algorithm by testing it with actual
recorded whale and explosion sounds. The results demonstrated
its effectiveness in accurately tracking impulsive sound sources in
a 2D space. Overall, our proposed approach showcases advance-
ments in impulsive sound source localization and offers notable
improvements over existing techniques.

Figure 10: 2D localization and tracking of an impulsive sound source
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